跳转至

等厚干涉实验数据处理

  1. 利用牛顿环测量平凸透镜曲面的曲率半径(\(钠光灯波长\lambda = 589.3nm\)
圈数号(k) 标尺读数 d_(右)-d_(左)/mm 直径平方/mm² 隔6圈的平方数之差/mm² R/m \(\overline{R}\)/m
d_(右)/mm d_(左)/mm
12 20.987 27.322 -6.335 40.13 14.70 1.039 1.058
11 21.080 27.223 -6.143 37.74 14.79 1.046
10 21.181 27.119 -5.938 35.26 14.81 1.047
9 21.288 27.010 -5.722 32.74 15.00 1.061
8 21.390 26.891 -5.501 30.26 15.15 1.071
7 21.512 26.790 -5.278 27.86 15.33 1.084
6 21.628 26.671 -5.043 25.43
5 21.760 26.550 -4.790 22.94
4 21.899 26.421 -4.522 20.45
3 22.060 26.272 -4.212 17.74
2 22.219 26.106 -3.887 15.11
1 22.400 25.940 -3.540 12.53
\[由\ R = \frac{{d_{m}}^{2} - {d_{n}}^{2}}{4(m - n)\lambda}\ ,\overline{R} = \frac{\sum_{}^{}R_{i}}{6} = 1.058m,u_{A} = \sqrt{\frac{1}{5 \ast 6}\sum_{i = 1}^{6}{({D_{i}}^{2} - \overline{{D_{k}}^{2}})}^{2}} = 0.0983{mm}^{2} $$$$u_{B} = \frac{\Delta 仪}{\sqrt{3}} = \frac{0.004}{\sqrt{3}} = 0.0023{mm}^{2},u_{D} = \sqrt{{u_{A}}^{2} + {u_{B}}^{2}} = 0.0983{mm}^{2} $$$$u_{R} = \frac{u_{D}}{4 \ast 6\lambda} = 0.00695m,R = (1.058 \pm 0.0069)\ m\]
  1. 利用劈尖测量薄片厚度(\(钠光灯波长\lambda = 589.3nm,\)L=42.351mm)
标尺读数/mm 标尺读数/mm s_(x+10)-s_(x)/mm e/mm
s1=43.769 s11=39.927 -3.842 3.501×10⁻²
s2=43.331 s12=39.559 -3.772
s3=42.931 s13=39.238 -3.693
s4=42.522 s14=38.921 -3.601
s5=42.137 s15=38.554 -3.583
s6=41.713 s16=38.220 -3.493
s7=41.373 s17=37.893 -3.48
s8=40.996 s18=37.570 -3.426
s9=40.662 s19=37.250 -3.412
s10=40.289 s20=36.945 -3.344
\[e = \frac{50L \ast \lambda}{\sum_{}^{}{(s_{10 + x} - s_{x})}} = 3.501 \ast 10^{- 2}mm,u_{\Delta s\ A} = \sqrt{\frac{1}{9 \ast 10}\sum_{i = 1}^{10}{({{\Delta s}_{i}}^{2} - \overline{{{\Delta s}_{k}}^{2}})}^{2}} = 0.052mm $$$$u_{\Delta s\ B} = \frac{\Delta 仪}{\sqrt{3}} = 0.0023{mm}^{2},\ u_{\Delta s} = \sqrt{{u_{A}}^{2} + {u_{B}}^{2}} = 0.052mm,u_{e} = e\sqrt{\frac{u_{\Delta s}}{\Delta s}} = 0.1208 \ast 10^{- 2} $$$$e = (3.501 \pm 0.1208) \ast 10^{- 2}\ mm\]