等厚干涉实验数据处理¶
- 利用牛顿环测量平凸透镜曲面的曲率半径(\(钠光灯波长\lambda = 589.3nm\))
圈数号(k) | 标尺读数 | d_(右)-d_(左)/mm | 直径平方/mm² | 隔6圈的平方数之差/mm² | R/m | \(\overline{R}\)/m | |
d_(右)/mm | d_(左)/mm | ||||||
12 | 20.987 | 27.322 | -6.335 | 40.13 | 14.70 | 1.039 | 1.058 |
11 | 21.080 | 27.223 | -6.143 | 37.74 | 14.79 | 1.046 | |
10 | 21.181 | 27.119 | -5.938 | 35.26 | 14.81 | 1.047 | |
9 | 21.288 | 27.010 | -5.722 | 32.74 | 15.00 | 1.061 | |
8 | 21.390 | 26.891 | -5.501 | 30.26 | 15.15 | 1.071 | |
7 | 21.512 | 26.790 | -5.278 | 27.86 | 15.33 | 1.084 | |
6 | 21.628 | 26.671 | -5.043 | 25.43 | |||
5 | 21.760 | 26.550 | -4.790 | 22.94 | |||
4 | 21.899 | 26.421 | -4.522 | 20.45 | |||
3 | 22.060 | 26.272 | -4.212 | 17.74 | |||
2 | 22.219 | 26.106 | -3.887 | 15.11 | |||
1 | 22.400 | 25.940 | -3.540 | 12.53 |
\[由\ R = \frac{{d_{m}}^{2} - {d_{n}}^{2}}{4(m - n)\lambda}\ ,\overline{R} = \frac{\sum_{}^{}R_{i}}{6} = 1.058m,u_{A} = \sqrt{\frac{1}{5 \ast 6}\sum_{i = 1}^{6}{({D_{i}}^{2} - \overline{{D_{k}}^{2}})}^{2}} = 0.0983{mm}^{2}
$$$$u_{B} = \frac{\Delta 仪}{\sqrt{3}} = \frac{0.004}{\sqrt{3}} = 0.0023{mm}^{2},u_{D} = \sqrt{{u_{A}}^{2} + {u_{B}}^{2}} = 0.0983{mm}^{2}
$$$$u_{R} = \frac{u_{D}}{4 \ast 6\lambda} = 0.00695m,R = (1.058 \pm 0.0069)\ m\]
- 利用劈尖测量薄片厚度(\(钠光灯波长\lambda = 589.3nm,\)L=42.351mm)
标尺读数/mm | 标尺读数/mm | s_(x+10)-s_(x)/mm | e/mm |
s1=43.769 | s11=39.927 | -3.842 | 3.501×10⁻² |
s2=43.331 | s12=39.559 | -3.772 | |
s3=42.931 | s13=39.238 | -3.693 | |
s4=42.522 | s14=38.921 | -3.601 | |
s5=42.137 | s15=38.554 | -3.583 | |
s6=41.713 | s16=38.220 | -3.493 | |
s7=41.373 | s17=37.893 | -3.48 | |
s8=40.996 | s18=37.570 | -3.426 | |
s9=40.662 | s19=37.250 | -3.412 | |
s10=40.289 | s20=36.945 | -3.344 |
\[e = \frac{50L \ast \lambda}{\sum_{}^{}{(s_{10 + x} - s_{x})}} = 3.501 \ast 10^{- 2}mm,u_{\Delta s\ A} = \sqrt{\frac{1}{9 \ast 10}\sum_{i = 1}^{10}{({{\Delta s}_{i}}^{2} - \overline{{{\Delta s}_{k}}^{2}})}^{2}} = 0.052mm
$$$$u_{\Delta s\ B} = \frac{\Delta 仪}{\sqrt{3}} = 0.0023{mm}^{2},\ u_{\Delta s} = \sqrt{{u_{A}}^{2} + {u_{B}}^{2}} = 0.052mm,u_{e} = e\sqrt{\frac{u_{\Delta s}}{\Delta s}} = 0.1208 \ast 10^{- 2}
$$$$e = (3.501 \pm 0.1208) \ast 10^{- 2}\ mm\]