跳转至

杨氏模量实验数据处理

1 2 3 4 5 6 平均值
L/mm 159.5 159.3 159.5 159.4 159.6 159.4 159.5
D/mm 5.987 5.977 5.975 5.987 5.979 5.980 5.980
M/g 37.433

不确定度的计算:

\[u_{m} = u_{B} = \frac{\mathrm{\Delta}_{仪} \ast m}{\sqrt{3}} = 0.6mg\]
\[u_{A} = \sqrt{\frac{\sum_{i = 1}^{6}{(l_{i} - l)}^{2}}{6 \ast 5}} = 0.048mm\ \ \ \ u_{B} = \frac{\mathrm{\Delta}_{仪} \ast l}{\sqrt{3}} = 0.12mm\ \ \ u_{l} = \sqrt{{u_{A}}^{2} + {u_{B}}^{2}} = 0.13mm\]
\[u_{A} = \sqrt{\frac{\sum_{i = 1}^{6}{(d_{i} - d)}^{2}}{6 \ast 5}} = 0.0021mm\ \ \ \ u_{B} = \frac{\mathrm{\Delta}_{仪} \ast d}{\sqrt{3}} = 0.0023mm\ \ \ u_{d} = \sqrt{{u_{A}}^{2} + {u_{B}}^{2}} = 0.0031mm\]
X/mm 5 10 15 20 25 30 35 40 45 50
X/L 2.56% 5.12% 7.67% 10.23% 12.79% 15.35% × 20.46% 23.01% 25.58%
f/Hz 730.1 729.1 728.1 727.2 726.9 725.7 × 726.5 726.8 726.9

外延法作拟合图曲线如下:

Figure_1

利用代码找到最小值:

也就是说共振频率约为726.2Hz

\[u_{f} = u_{B} = \frac{\mathrm{\Delta}_{仪} \ast f}{\sqrt{3}} = 0.06Hz\]

代入公式:

\[E = 1.6067 \ast \frac{L^{3} \ast m \ast f^{2}}{d^{4}} = 1.0064 \ast 10^{11}Pa\]
\[u_{E} = E\sqrt{{(3\frac{u_{L}}{L})}^{2} + {(4\frac{u_{d}}{d})}^{2} + {(\frac{u_{m}}{m})}^{2} + {(2\frac{u_{f}}{f})}^{2}} = 1.6452 \ast 10^{9}Pa\]

因此该棒的杨氏模量为:

\[E = (1.0064 \pm 0.0164) \ast 10^{11}\ Pa\]