声速的测定实验报告¶
驻波法测量 | ||||
实验数据L/mm | 波长λ/mm | |||
L1 | 3.620 | L7 | 28.920 | \(\(\lambda_{1} = 2 \ast \frac{L7 - L1}{6} = 8.433\)\) |
L2 | 7.495 | L8 | 33.489 | \(\(\lambda_{2} = 2 \ast \frac{L8 - L2}{6} = 8.665\)\) |
L3 | 12.019 | L9 | 37.890 | \(\(\lambda_{3} = 2 \ast \frac{L9 - L3}{6} = 8.624\)\) |
L4 | 16.728 | L10 | 42.413 | \(\(\lambda_{4} = 2 \ast \frac{L10 - L4}{6} = 8.562\)\) |
L5 | 20.931 | L11 | 46.886 | \(\(\lambda_{5} = 2 \ast \frac{L11 - L5}{6} = 8.652\)\) |
L6 | 25.176 | L12 | 50.928 | \(\(\lambda_{6} = 2 \ast \frac{L12 - L6}{6} = 8.584\)\) |
f/kHz | 39.76 |
t/℃ | 15.1 |
\[\overline{\lambda} = \frac{1}{6}\sum_{}^{}\lambda_{i} = 8.586\ mm\ \ \ \overline{v} = \overline{\lambda}*f = 341.399\ m/s\]
\[u_{\lambda A} = \sqrt{\frac{1}{n(n - 1)}\sum_{i = 1}^{n}{(x_{i} - \overline{x})}^{2}} = \sqrt{\frac{1}{6 \ast 5}\sum_{i = 1}^{6}{(\lambda_{i} - \overline{\lambda})}^{2}} = 0.0346\ mm\ \ \ u_{\lambda B} = \frac{\mathrm{\Delta} \ast f}{\sqrt{3}} = 0.0040\ mm\]
\[u_{\lambda} = \sqrt{{u_{\lambda A}}^{2} + {u_{\lambda B}}^{2}} = 0.0348\ mm\ \ \ u_{f} = 0.010\ kHz\ \ \ \ u_{v} = v\sqrt{{(\frac{u_{\lambda}}{\lambda})}^{2} + {(\frac{u_{f}}{f})}^{2}} = 1.386\ m/s\]
\[有:v = (341.399 \pm 1.386)\ m/s\]
\[\because v_{t} = 331.45 \ast \sqrt{1 + \frac{t}{275.15}} = 340.488\ m/s\ \ \ \therefore E = \frac{\left| v_{t} - \overline{v} \right|}{v_{t}} = \frac{|340.488 - 341.399|}{340.488} = 0.27\%\]
驻波法测量 | ||||
实验数据L/mm | 波长λ/mm | |||
L1 | 4.842 | L7 | 30.412 | \(\(\lambda_{1} = 2 \ast \frac{L7 - L1}{6} = 8.523\)\) |
L2 | 8.778 | L8 | 34.781 | \(\(\lambda_{2} = 2 \ast \frac{L8 - L2}{6} = 8.668\)\) |
L3 | 13.106 | L9 | 39.274 | \(\(\lambda_{3} = 2 \ast \frac{L9 - L3}{6} = 8.723\)\) |
L4 | 18.739 | L10 | 43.250 | \(\(\lambda_{4} = 2 \ast \frac{L10 - L4}{6} = 8.170\)\) |
L5 | 21.821 | L11 | 47.627 | \(\(\lambda_{5} = 2 \ast \frac{L11 - L5}{6} = 8.602\)\) |
L6 | 26.184 | L12 | 52.284 | \(\(\lambda_{6} = 2 \ast \frac{L12 - L6}{6} = 8.700\)\) |
\[\overline{\lambda} = \frac{1}{6}\sum_{}^{}\lambda_{i} = 8.564\ mm\ \ \ \overline{v} = \overline{\lambda} \ast f = 340.518\ m/s\]
\[u_{\lambda A} = \sqrt{\frac{1}{n(n - 1)}\sum_{i = 1}^{n}{(x_{i} - \overline{x})}^{2}} = \sqrt{\frac{1}{6 \ast 5}\sum_{i = 1}^{6}{(\lambda_{i} - \overline{\lambda})}^{2}} = 0.0847\ mm\ \ \ u_{\lambda B} = \frac{\mathrm{\Delta} \ast f}{\sqrt{3}} = 0.0040\ mm\]
\[u_{\lambda} = \sqrt{{u_{\lambda A}}^{2} + {u_{\lambda B}}^{2}} = 0.0848\ mm\ \ \ u_{f} = 0.010\ kHz\ \ \ \ u_{v} = v\sqrt{{(\frac{u_{\lambda}}{\lambda})}^{2} + {(\frac{u_{f}}{f})}^{2}} = 3.373\ m/s\]
\[有:v = (340.518 \pm 3.373)\ m/s\]
\[同理:v_{t} = 340.488\ m/s\ \ \ \therefore E = \frac{\left| v_{t} - \overline{v} \right|}{v_{t}} = \frac{|340.488 - 340.518|}{340.488} = 0.01\%\]