分光计实验数据处理¶
实验次数 | 左 | 右 | |左_(Ⅰ)-右_(Ⅰ)| | |左_(Ⅱ)-右_(Ⅱ)| | ∠A | ||
Ⅰ窗 | Ⅱ窗 | Ⅰ窗 | Ⅱ窗 | ||||
1 | 300°35′ | 120°39′ | 180°37′ | 0°32′ | 119°58′ | 120°07′ | 60°01′ |
2 | 305°10′ | 125°13′ | 185°10′ | 5°8′ | 120°00′ | 120°05′ | 60°01′ |
3 | 308°40′ | 128°43′ | 188°39′ | 8°37′ | 120°01′ | 120°06′ | 60°02′ |
4 | 309°53′ | 129°57′ | 189°53′ | 9°51′ | 120°00′ | 120°06′ | 60°02′ |
5 | 308°33′ | 128°36′ | 188°33′ | 8°32′ | 120°00′ | 120°04′ | 60°01′ |
6 | 306°57′ | 126°58′ | 187°00′ | 6°58′ | 119°57′ | 120°00′ | 59°59′ |
\[\overline{\angle A} = \frac{1}{6}\sum_{i = 1}^{6}{\angle A}_{i} = 60{^\circ}01\prime\]
\[u_{A} = \sqrt{\frac{1}{n(n - 1)}\sum_{i = 1}^{n}{({\angle A}_{i} - \overline{\angle A})}^{2}} = \sqrt{\frac{1}{6 \times 5}\sum_{i = 1}^{6}{({\angle A}_{i} - \overline{\angle A})}^{2}} = \frac{\sqrt{10}}{10}\prime\]
\[u_{B} = \frac{\mathrm{\Delta}_{仪}}{\sqrt{3}} = \frac{1\prime}{\sqrt{3}} = \frac{\sqrt{3}}{3}\prime\]
\[u = \sqrt{{u_{A}}^{2} + {u_{B}}^{2}} = \sqrt{\frac{1}{10} + \frac{1}{3}} = \sqrt{\frac{13}{30}} \approx 0.6\prime\]
故测量结果是\(\angle A = 60{^\circ}01\prime \pm 0.6\prime\)